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Multipulses in discrete Hamiltonian nonlinear systems
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In this work, the behavior of multipulses in discrete Hamiltonian nonlinear systems is investigated. The
discrete nonlinear Schdinger equation is used as the benchmark system for this study. A singular perturbation
methodology as well as a variational approach are implemented in order to identify the dominant factors in the
discrete problem. The results of the two methodologies are shown to coincide in assessing the interplay of
discreteness and exponential tail-tail pulse interaction. They also allow one to understand why, contrary to what
is believed for their continuum siblings, discrete systems can suggatio multipulse configurations, a
conclusion that is subsequently verified by numerical experiment.
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In one spatial dimension, pulselike solutions are ratheglose to theh— o limit [24] (whereh is the lattice spacing
generic features of partial differential equatiofBDE'S  put cannot be equally insightful when we consider cases
alongside kinkg1,2]. These are connections of a fixed point close to the continuum and/or many lattice sites’ comprising
in phase spacérepresenting a uniform steady statgith  pulses as well as for configurations consisting of multiple
itself (in the case of a pulgeor with another fixed pointin  copies of such coherent structures. It is interesting that in the
the case of a kink The above features present themselves ircontinuum systems, some of these multipulse configurations
Hamiltonian[3] as well as in dissipatived] systems. Typical have been proved to be unstaljl26] and references thergin
applications on the parabolic side involve the propagation o&nd, in fact, all of them have been conjectured to be unstable
stimuli down nerve axons in neurophysiolodj, the behav- in the same works.
ior of calcium release waves in living cell6], the propaga- Our purpose here is to show that, even if this is so for
tion of action potentials in the hed], or the concentrations continuum systems, the statement is not true for discrete sys-
of reactants in catalytic chemistfg]. On the hyperbolic side tems. Notably, we intend to show that there can exist stable
also, however, applications abound: from the DNA doublestationary multipulse configurations in Hamiltonian nonlin-
strand[9] to complex electronic materia[40] and from op-  ear lattices. In showing that, we also intend to unify two
tical fibers to propagation of beams in waveguiffEs12. It  seemingly different perspectives in addressing the problem.
is, in particular, the latter class of models that we will dealThe first is the singular perturbation methodology formulated
with in this work. Furthermore, many of the applications principally by Meron and co-workersee, i.e.[27]) for con-
mentioned above are, in their realistic implementation, notinuum dissipative systems while the other is the variational
genuinely continuum but rather inherently discrete in natureapproach adopted if28]. The former method is adapted to
Hence, in this work we will study the behavior of pulses in the Hamiltonian and discrete setup and the results of the two
such Hamiltonian nonlinear lattice models. are shown to coincide in extracting the prevalent contribut-

A simple generic system encompassing most of the pheing factors that balance each other in creating such stable
nomenological features of such problems is the discrete norstructures. We finally support these claims by means of nu-
linear Schradinger (DNLS) equation. The DNLS was used merical evidence.
by Jenselfi13], Christodoulides, and Josept¥] and later by The DNLS equation reads
Aceveset al.[15] to model the propagation of discrete self- )
trapped beams in arrays of coupled optical waveguides. It iup=—A,u,—2|u,|%up,, D
also serves as a generic envelope equation for discrete Klein- _ ) o )
Gordon-type lattice equations; see, ij@]. More recently, where the overdot denotes time differentiationis the site
experimental wor16,17] has greatly increased the interest index, u is the discrete complex field, anfi;u,=(up. 4
in such systems and has stimulated an intense theoreticdiUn-1—2Un)/h® Now in accordance witti27], consider
effort to clarify the statics, dynamics, and thermodynamics othe Ansatz
their pulselike patterngl8-22.

Most of these works were addressing the subject of single
pulses and their stability. A problem that has been less ad-
equately addressed, to the best of our knowledge, is the one
of multipulses in such discrete Hamiltonian chains. Somevherei indexes the pulse@vhich can be thought of as cop-
first aspects of the problem were considerefli8] but were ies of an original pulse in a system witl pulses and x;
in part contradicted by the numerical findings[@#%]. The indexes the “centers” of the pulséwhen thought of as par-
multibreather technique when coming from the anticon-ticles). Notice that, in essence, we now take the inverse
tinuum limit [25] can provide a number of useful results viewpoint to the one of24,25, seeking a qualitative and

N
un=Zl H;(n;h,x;)exp(it), (2)
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quantitative understanding of the relevant physical factors ipairs. These modeg32] correspond to translations of the
the problemH; is a trial Ansatz for the form of the pulse. In pulses. In the continuum system, where translational invari-

particular, in NLS one can think oH;=p;/coshfih—x)

ance is a symmetry of the problem, the frequencies of such

(wherep;= =1 is a parity variable However, note, and we modes are 0. However, discreteness breaks translational in-

will return to this point, that the specific form &f; will not

variance beyond all algebraic orders to cause an exponen-

be important for what follows. Also note that, per our Ansatz,tially small bifurcation of the translational modése., their
we have implicitly rescaled the width of the solitary wave to frequency becomes typically @{exd —#%/(2h)T} [32,33).
1 (or equivalently that we have rescaled all relevant length\Ve denote their respective eigenfunctionpasnd we form

scales of the problem by dividing them by that wigih?;

the inner product of E¢(6) with each of the bra vectokp,|.

hence our results can naturally be brought back to the case @his is a classic method of obtaining collective coordinate

p#1 by the transformatiox;,—X,p, wherex;, is the length

equations, as is discussed [184] (see also references

scale of interest As per the non-exactness of the solution of therein. We thus obtain

Eq. (2), a correction factoeR,, exp(t) is used in the Ansatz,
in the spirit of{27]. Also, to demonstrate the generality of the

method, we exchange the nonlinearityug?u, with a gen-

eral nonlinear factoA{u,) (which can permit, for instance,

nonlinear gain-loss processes
We now use that

N(Z Hi—eRn)~N<2i Hi)—e/\/’

> Hi)Rn 3

and the approximate identifgince the Ansatz foH; will be
close to the continuum form of the pu)se

_Z Hi~—AzZ Hi— 2 NH). (4)

Notice that the assumption is implicit in E@) that we are

dealing with a “dilute gas” of pulses. This notion will be

made more precise belowee pointiv) below on the stabil-
ity of multipulses, as well af27]]. Denoting by £ the lin-
earization operator

L=id—1+A,+N’

2 Hi), (5)

we use Eqs(3)—(5) in substituting the Ansatz of Eq2) in
Eq. (1). The equation can then be rewritten as
N(Ei Hi)—Z NH)

eLR,= . (6)

For reasons of simplicity, the dependence of the cemters

N
i=1

<pk|£|Rn>“€_1<pk ; N,(Hi)Hj>- (7)

We now use the fact thatp,| is an eigenfunction of the
operatorZ with eigenvaluew, as well as the fact thdp,| is
sharply peakedand hence only linear terms id, ., will
contribute to the expression; the more distant ones contribute
higher-order terms i). We thus obtain

w(Px|Rny =€ 1Pl F(HE) (Hys 1 +H 1)), (8)

where F(H,) is a suitable nonlinear functiofF(H,)
~N'(H,); see also Refl27]].

We now use the methodology ¢§27] but for a Hamil-
tonian systemwhere the eigenvalues will lie on the imagi-
nary axis[under the conditions given below in poifit)]
and, hence, only the exponential term in the pulse interaction
of the right-hand sidéRHS) will survive [compare with Eq.
(3.23 of [27]]. We also incorporate the results [&2,33 in
which the asymptotics beyond all orders or the discrete
Evans function methodologies have been used to provide
a very accurate functional prediction for the translat-
ional mode frequencies. This result readsw
~Ch™# exg —7?/(2h)]Jcos(2mx /h). The resulting final
form of Eq.(8), which is the central analytical result of this
work reads

h-8 w? 27X
C ex ~5n co .

~ag exd — (Xjr1—X)]+a; exd —(Xi—Xj-1)], (9

on time is disallowed. This permits us also to automatically

take care of the constrainfsuch as the conservation of the

energy and of the norm of the solutjoof the dynamical

system of Eq(1) and allows us to directly look for nonuni-

form effective steady statdsince theH;’s will not depend

on time of the problem. For an overview as to why traveling

(in the strict mathematical sense, defined, i.e., in REJ.

may be problematic in discrete systems, the reader is referred
to Ref.[29] and references therein. In fact, it was recently
claimed in[30] that DNLS with local nonlinearity “does not
admit moving breathers.” For a generalized notion of travel-

ing in systems of the type of Eql), see, i.e.[31].

whereag,a; are constants whose value will depend on the
amplitude and parity of the pulses. Alsqg,. ;>X;>X;_4 has
been assume@without loss of generality

Some remarks are now in order. First, let us consider the
case in which there are only two pulses. One can adopt a
variational approach substituting in the DNLS Hamiltonian

2
u —Uu
H:Z | n+1 n| _|Un|4

17 (10

a two-pulse Ansatu,,=3,;p;[ 1/coshfh—x;)]exp(t). The en-

For a Hamiltonian system wittN pulses, general theo- suing Hamiltonian consists of the exponentially sniallthe
rems about the preservation of the number of eigenvaluesttice spacingterms of the Peierls-Nabarro barrier that is
will lead to the generation dfl so-called translational mode present due to discreteness for each pulse, as well as of the
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exponentially small tail interaction terms. This task was per- (iii) Generality of conclusions. As mentioned before, on
formed in[28]. Subsequent minimization of the Hamiltonian the one hand, this analysis has been performed for DNLS,
provides the equation for the equilibrium positions for thewhich serves as a generic envelope equation in lattice Hamil-
(multiple) potential equilibria of the pulses as tonian problems. Hence, at least within the appropriate time
scales, the analysis will be applicable generically for Klein-
2.5 2 20 G_qrdon-type equations also. _Furthermore, notic_e that no spe-
e F{ — _) sin(—(xi — xj)) =+exp(—2|x _Xj|) cifics on the type of nonlinearity have been required. Further-
3h* h h more, as has been shown for a variety of relevant models
(11) (see, i.e.[32,33), the breaking of translational invariance
due to discreteness leads to an exponential imarmonic in
and the center of mas&= (x;+x;)/2=0,h/2 could be either ~ Xi behavior of the translational mode frequeneysimilar to
centered on a site or centered between sites, respectively, fdte one used above. This is also a general result, following
the plus or minus in Eq(11). Now, if one considers Eq9),  from the Melnikov calculation of the splitting of homoclinic
for each of the two pulses, the difference of the two equaorbits in nonintegrable discrete systef8$]. Hence, the ba-
tions will yield the “quantization” condition[sin(2zz/h)  sic components of E¢(11) are generic features of the sys-
=0] on the center of mass, while the sum will result in antems of interest.
equation exactly like Eq(11). As is highlighted in[28], (iv) Stability of multipulses. The above results also show
stable multipulse configurations will restitdependentlyof ~ Why stable multipulse configurations are possible in discrete
whetherz=0 or Z=h/2, when these multipulses consist of Systems. In particular, as has been remarkel@8j, the full
two individually stable pulses. Unstable configurations will Problem has translational modes close to the spectral origin.
result from the concatenation of unstable individual pulsestThese modes “map” the curvature of the PN barrier. Sup-
(again independently of the center-of-mass posjtiovhile ~ Pose that all components of a multipulse solution are at cor-
saddle configurations will result from the concatenation of a€sponding local minima of the PN barrier. In that case, only
stable and an unstable pulse. For more details, see Sec. Il Bfteraction eigenmodes can be unstable. As was shown in
Ref.[28]. The variational approach is quite useful in charac-[28], for two-pulse configurations when the pulses have op-
terizing the two-pulse case but is rather cumbersome to appljosite parityup-down configuratioy; the (exponential in the
for multipulses. On the other hand, the singular perturbatiopulse distanceinteraction mode is stable. Hence, putting it
approach is more qualitativéhe details of the constants de- in the language of27], this O(e) eigenvalue[where e
pend, for instance, on the specifics of the eigenmpties  =exp(-L), L=[Ax;[] is stable. This conclusion naturally
captures very nicely the structure of the problem and théeads one to believe that only configurations of the form
relevant physical factors contributing to it and can be easily -up-down-up- - - can be stable. As is shown by our analy-
generalized to an arbitrary number of pulses. However, wéis, such configurations will have aB(e) contribution in
have shown that the two methods work in a consistent martheir interaction modes from the up-down part and only a
ner and lead to the following general conclusions regardingnuch weakerO(e?) effect from the up-up interactiofof
pulse trains. next nearest neighbgrsConsequently, such configurations
(i) The generalization to multipulses. A lattice of pulsesshould be stable. This conclusion was in fact verified by
will form. If the individual constituent pulses are considerednumerical experiments such as the one shown in Fig. 1. In
as “mesoscopic” particle$whose distance satisfies the cri- this case, a Newton-Raphson numerical technique with ap-
teria that will be set below; see poifiv)], then their mutual propriate selection of initial conditions was used to create an
interaction(coupling is Toda-like[the exponential term in up-down-up configuratiorion a 300-site lattice, with peri-
their mutual separation resulting as in the RHS of 8], odic boundary conditions and=0.5) and subsequent nu-
but there is also a type of harmonic on-site substrate potermerical linear stability analysis confirms that the spectrum of
tial for each particlgthe term coming from the translational this multipulse indicates stability. One may, however, worry
eigenmodes in the LHS of E¢9)] whose amplitude is ex- that oscillatory instabilities resulting from the collision of the
ponentially small in the lattice spacing, due to the Peierlsinteraction eigenmodes with either the translational modes
Nabarro (PN) barrier. The balance of these terms fdr  [35] or the continuous spectrum mod@®,35 might be pos-
pulses[through the set oN Egs. (9)] will give rise to a  sible (due to their opposite Krein sigf25,33). Alas, the
lattice of N pulses for anyN=2. interaction eigenmodes behave Rs-exp(-L) while the
(i) The continuum limit and the role of discreteness. Thetranslational eigenmodes behave asexg’/(2h)]. For small
above description justifies why stationary continuum multi-and intermediate discretengsg to h~0O(1)] to ensure di-
pulses are so special and prone to instability. The exponentiditeness and stability against collisions of eigenvalues and
interaction in the absence of the balancing discretenessscillatory instabilities, one has a straightforward criterion
would necessitate motion of the pulse cenf@d, unless a by comparing the exponential dependences. Namely, if
very special(possibly very symmetricstationary configura- > #%/(2h) [L>=?/(2hp?) in dimensional units then no
tion is achieved. These results also justify why discretenessuch collisions will occur and the multipulse configurations
has such ample possibilities for static multipulse configurawill not suffer oscillatory instabilities. Notice that this con-
tions. The(periodic in the whole lattioePN barrier creates a dition is more stringent than the diluteness conditidn (
discreteness-induced force term that can balance the expe-1; L>1/p in dimensional units In most cases of smadl,
nential (in the pulse distangdail interaction. in fact, the condition may be overly conservative since the
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0.5 E
_ FIG. 1. A (stable multipulse
8 o0 8 configuration and its spectrum.
The top left subplot shows the
05 spatial  profile (the  time-
independent part of the solutipn
: while the top right shows the
300 120 180 200 - 05 0 0.5 spectral  plane ¢, w;); the
® subscripts denote the real and
' imaginary part of the eigenvalues,
0.042 0.015 respectively. _The localized eigen-
modes consist of three transla-
0.0415 0.01 © tional mode pairs oflw|~0.04
o (shown in the bottom left panel
0.041 0.005 and two interaction mode pairs of
57.0405 5 o 6 |w|~0.01 as well as two remain-
ing at zero(due to symmetryei-
0.04 -0.005 o genvalues(shown in the bottom
right panel.
0.0395 -0.01
o
0.039 -0.015
-0.04 -0.02 002  0.04 ~0.015 -0.01 —0.005 (3 0.005 0.01

power-law prefactor If #) of the translational eigenmodes crete Hamiltonian systems and/or the more pop(bat less
will be important. For strong discretenedsx1), the trans- simple to generalizevariational approach in such systems. It
lational eigenmodes have merged with the continuous speean, in turn, lead to the generation of static multipulse con-
trum (these eigenmodes do not have opposite Krein sign, digurations in such systems and a qualitative understanding
least not in the bright soliton case considered herdence, both of such equilibria as well as of their potential stability.
in this case, the oscillatory instability will appear due to col-We have in fact shown explicitly numerically and justified
lision of interaction eigenmodes with the continuous specanalytically why such systems can, possibly contrary to their
trum and a criterion for stability can be similarly derived by continuum siblings, support such stable multipulse entities.
ensuring tha€ exp(—pL)<<A [in dimensional units, witlC a  Notice the superiority of the singular perturbation technique
constant ofO(1) andA the solitary wave frequeng¢yEven  developed herein with respect to the variational approach of
thoughC is, in general, unknown, it can either be found very[28], as it is unaffectedin its degree of complicatigrby the
accurately by simulationsince the exponential dependence number of pulses involved and contains a clear physical in-
on the separation is very clear; see, i[@8]) or it can be tuitive explanation of the competing factors and the nature of
approximated for a rough estimate by a constar®(f). In  the resulting equations. On the other hand, when it can be
general, the more stringent one of the tédluteness and formulated, the variational method gives a more quantitative
stability) conditions can be enforced and thfre., if the  aspect of the problem. It should also be highlighted that on
pulse separation is larger than the critical one imposed byhe basis of maintaining the diluteness of the gas of pulses
(the more stringent ¢fthe two condition§ the multipulse  studied herein and also of avoiding oscillatory instabilities
configuration willgenericallybe stable. (such as those explored [85,22), specific conditions for
We believe that the above exposition clarifies the featurethe pulse separation have been developed that allow one to
relevant to multipulse problems in discrete systems. The exstate what is the critical pulse separation, beyond which, for
ponentially small transversality effects of the orbits causeany interpulse distancésatisfying Eq.(9)], such configura-
exponentially smal(in the lattice spacingeigenvalue$32],  tions will be stable. A possibly interesting generalization of
which can be evaluated very accurately via the approach dhese results could consist of a step similar to the one of
[32,33. In turn, these effects give rise to a periodic, on theparagraph 4.4 of27], where a continuougor possibly a
lattice, potential-energy barridof exponentially small am- genuinely discretemedium of pulses is considered. Such
plitude) that consequently exerts a force on each putse “mesoscopic” lattices of pulses and of coherent structures
“substrate” forcg. Additionally, multipulse systems encom- more generally could be of relevance to many continuum as
pass the exponentially smdHow in the interpulse distange well as discrete systems. It should also be noted that in the
effects of tail interaction, which also cause @ttractive for case presented herein, the positions and amplitudes of the
the same parity, repulsive for opposite pafidB]) additional  pulse centers were directly determined by the intrinsic dy-
force. The balance of the two forces can be manifested bothamics of Eq.(1). However, should an appropriate external
through the adjustment of singular perturbation theory to dissite-dependent potential be addéstable multipulses con-
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sisting of pulses of variable amplitude or of selected positiorthe nonlinear waves. Such challenging tasks will be left for
can be achieved. For a detailed study of such phenomenfjture studies.

see, i.e.,[36]. Finally, an interesting generalization of the
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