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Multipulses in discrete Hamiltonian nonlinear systems
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In this work, the behavior of multipulses in discrete Hamiltonian nonlinear systems is investigated. The
discrete nonlinear Schro¨dinger equation is used as the benchmark system for this study. A singular perturbation
methodology as well as a variational approach are implemented in order to identify the dominant factors in the
discrete problem. The results of the two methodologies are shown to coincide in assessing the interplay of
discreteness and exponential tail-tail pulse interaction. They also allow one to understand why, contrary to what
is believed for their continuum siblings, discrete systems can sustain~static! multipulse configurations, a
conclusion that is subsequently verified by numerical experiment.
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In one spatial dimension, pulselike solutions are rat
generic features of partial differential equations~PDE’s!
alongside kinks@1,2#. These are connections of a fixed poi
in phase space~representing a uniform steady state! with
itself ~in the case of a pulse! or with another fixed point~in
the case of a kink!. The above features present themselves
Hamiltonian@3# as well as in dissipative@4# systems. Typical
applications on the parabolic side involve the propagation
stimuli down nerve axons in neurophysiology@5#, the behav-
ior of calcium release waves in living cells@6#, the propaga-
tion of action potentials in the heart@7#, or the concentrations
of reactants in catalytic chemistry@8#. On the hyperbolic side
also, however, applications abound: from the DNA dou
strand@9# to complex electronic materials@10# and from op-
tical fibers to propagation of beams in waveguides@11,12#. It
is, in particular, the latter class of models that we will de
with in this work. Furthermore, many of the applicatio
mentioned above are, in their realistic implementation,
genuinely continuum but rather inherently discrete in natu
Hence, in this work we will study the behavior of pulses
such Hamiltonian nonlinear lattice models.

A simple generic system encompassing most of the p
nomenological features of such problems is the discrete n
linear Schro¨dinger ~DNLS! equation. The DNLS was use
by Jensen@13#, Christodoulides, and Joseph@14# and later by
Aceveset al. @15# to model the propagation of discrete se
trapped beams in arrays of coupled optical waveguides
also serves as a generic envelope equation for discrete K
Gordon-type lattice equations; see, i.e.,@9#. More recently,
experimental work@16,17# has greatly increased the intere
in such systems and has stimulated an intense theore
effort to clarify the statics, dynamics, and thermodynamics
their pulselike patterns@18–22#.

Most of these works were addressing the subject of sin
pulses and their stability. A problem that has been less
equately addressed, to the best of our knowledge, is the
of multipulses in such discrete Hamiltonian chains. So
first aspects of the problem were considered in@23# but were
in part contradicted by the numerical findings of@24#. The
multibreather technique when coming from the antico
tinuum limit @25# can provide a number of useful resul
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close to theh→` limit @24# ~whereh is the lattice spacing!
but cannot be equally insightful when we consider ca
close to the continuum and/or many lattice sites’ compris
pulses as well as for configurations consisting of multip
copies of such coherent structures. It is interesting that in
continuum systems, some of these multipulse configurati
have been proved to be unstable~@26# and references therein!
and, in fact, all of them have been conjectured to be unsta
in the same works.

Our purpose here is to show that, even if this is so
continuum systems, the statement is not true for discrete
tems. Notably, we intend to show that there can exist sta
stationary multipulse configurations in Hamiltonian nonli
ear lattices. In showing that, we also intend to unify tw
seemingly different perspectives in addressing the probl
The first is the singular perturbation methodology formula
principally by Meron and co-workers~see, i.e.,@27#! for con-
tinuum dissipative systems while the other is the variatio
approach adopted in@28#. The former method is adapted t
the Hamiltonian and discrete setup and the results of the
are shown to coincide in extracting the prevalent contrib
ing factors that balance each other in creating such st
structures. We finally support these claims by means of
merical evidence.

The DNLS equation reads

i u̇n52D2un22uunu2un , ~1!

where the overdot denotes time differentiation,n is the site
index, u is the discrete complex field, andD2un5(un11
1un2122un)/h2. Now in accordance with@27#, consider
the Ansatz

un5(
i 51

N

Hi~n;h,xi !exp~ i t !, ~2!

wherei indexes the pulses~which can be thought of as cop
ies of an original pulse in a system withN pulses! and xi
indexes the ‘‘centers’’ of the pulses~when thought of as par
ticles!. Notice that, in essence, we now take the inve
viewpoint to the one of@24,25#, seeking a qualitative and
©2001 The American Physical Society11-1
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quantitative understanding of the relevant physical factor
the problem.Hi is a trial Ansatz for the form of the pulse. I
particular, in NLS one can think ofHi5pi /cosh(nh2xi)
~wherepi561 is a parity variable!. However, note, and we
will return to this point, that the specific form ofHi will not
be important for what follows. Also note that, per our Ansa
we have implicitly rescaled the width of the solitary wave
1 ~or equivalently that we have rescaled all relevant len
scales of the problem by dividing them by that widthr21;
hence our results can naturally be brought back to the cas
rÞ1 by the transformationxl→xlr, wherexl is the length
scale of interest!. As per the non-exactness of the solution
Eq. ~2!, a correction factoreRn exp(it) is used in the Ansatz
in the spirit of@27#. Also, to demonstrate the generality of th
method, we exchange the nonlinearity 2uunu2un with a gen-
eral nonlinear factorN(un) ~which can permit, for instance
nonlinear gain-loss processes!.

We now use that

N S (
i

Hi2eRnD'N S (
i

Hi D 2eN8S (
i

Hi DRn ~3!

and the approximate identity~since the Ansatz forHi will be
close to the continuum form of the pulse!

2(
i

Hi'2D2(
i

Hi2( N~Hi !. ~4!

Notice that the assumption is implicit in Eq.~4! that we are
dealing with a ‘‘dilute gas’’ of pulses. This notion will be
made more precise below@see point~iv! below on the stabil-
ity of multipulses, as well as@27##. Denoting byL the lin-
earization operator

L5 i ] t211D21N8S (
i

Hi D , ~5!

we use Eqs.~3!–~5! in substituting the Ansatz of Eq.~2! in
Eq. ~1!. The equation can then be rewritten as

eLRn5FN S (
i

Hi D 2(
i

N~Hi !G . ~6!

For reasons of simplicity, the dependence of the centerxi
on time is disallowed. This permits us also to automatica
take care of the constraints~such as the conservation of th
energy and of the norm of the solution! of the dynamical
system of Eq.~1! and allows us to directly look for nonuni
form effective steady states~since theHi ’s will not depend
on time! of the problem. For an overview as to why travelin
~in the strict mathematical sense, defined, i.e., in Ref.@1#!
may be problematic in discrete systems, the reader is refe
to Ref. @29# and references therein. In fact, it was recen
claimed in@30# that DNLS with local nonlinearity ‘‘does no
admit moving breathers.’’ For a generalized notion of trav
ing in systems of the type of Eq.~1!, see, i.e.,@31#.

For a Hamiltonian system withN pulses, general theo
rems about the preservation of the number of eigenva
will lead to the generation ofN so-called translational mod
02661
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pairs. These modes@32# correspond to translations of th
pulses. In the continuum system, where translational inv
ance is a symmetry of the problem, the frequencies of s
modes are 0. However, discreteness breaks translationa
variance beyond all algebraic orders to cause an expo
tially small bifurcation of the translational modes„i.e., their
frequency becomes typically ofO$exp@2p2/(2h)#% @32,33#….
We denote their respective eigenfunctions aspk and we form
the inner product of Eq.~6! with each of the bra vectorŝpku.
This is a classic method of obtaining collective coordina
equations, as is discussed in@34# ~see also reference
therein!. We thus obtain

^pkuLuRn&'e21K pkU(
i 51

N

(
j Þ i

N8~Hi !H j L . ~7!

We now use the fact that̂pku is an eigenfunction of the
operatorL with eigenvaluev, as well as the fact that^pku is
sharply peaked~and hence only linear terms inHk61 will
contribute to the expression; the more distant ones contrib
higher-order terms ine). We thus obtain

v^pkuRn&5e21^pkuF~Hk!~Hk111Hk21!&, ~8!

where F(Hk) is a suitable nonlinear function@F(Hk)
'N8(Hk); see also Ref.@27##.

We now use the methodology of@27# but for a Hamil-
tonian system, where the eigenvalues will lie on the imag
nary axis @under the conditions given below in point~iv!#
and, hence, only the exponential term in the pulse interac
of the right-hand side~RHS! will survive @compare with Eq.
~3.23! of @27##. We also incorporate the results of@32,33# in
which the asymptotics beyond all orders or the discr
Evans function methodologies have been used to prov
a very accurate functional prediction for the transl
ional mode frequencies. This result readsv
'Ch2b exp@2p2/(2h)#Acos(2pxi /h). The resulting final
form of Eq. ~8!, which is the central analytical result of thi
work reads

Ch2b expS 2
p2

2hDAcosS 2pxi

h D
'a0 exp@2~xi 112xi !#1a1 exp@2~xi2xi 21!#, ~9!

wherea0 ,a1 are constants whose value will depend on t
amplitude and parity of the pulses. Also,xi 11.xi.xi 21 has
been assumed~without loss of generality!.

Some remarks are now in order. First, let us consider
case in which there are only two pulses. One can ado
variational approach substituting in the DNLS Hamiltonia

H5(
n

uun112unu2

2h2
2uunu4 ~10!

a two-pulse Ansatzun5( i pi@1/cosh(nh2xi)#exp(it). The en-
suing Hamiltonian consists of the exponentially small~in the
lattice spacing! terms of the Peierls-Nabarro barrier that
present due to discreteness for each pulse, as well as o
1-2
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MULTIPULSES IN DISCRETE HAMILTONIAN . . . PHYSICAL REVIEW E64 026611
exponentially small tail interaction terms. This task was p
formed in@28#. Subsequent minimization of the Hamiltonia
provides the equation for the equilibrium positions for t
~multiple! potential equilibria of the pulses as

2p5

3h4
expS 2

p2

h D sinS 2p

h
~xi2xj ! D56exp~22uxi2xj u!

~11!

and the center of massZ5(xi1xj )/250,h/2 could be either
centered on a site or centered between sites, respectivel
the plus or minus in Eq.~11!. Now, if one considers Eq.~9!,
for each of the two pulses, the difference of the two eq
tions will yield the ‘‘quantization’’ condition@sin(2pZ/h)
50# on the center of mass, while the sum will result in
equation exactly like Eq.~11!. As is highlighted in@28#,
stable multipulse configurations will resultindependentlyof
whetherZ50 or Z5h/2, when these multipulses consist
two individually stable pulses. Unstable configurations w
result from the concatenation of unstable individual pul
~again independently of the center-of-mass position!, while
saddle configurations will result from the concatenation o
stable and an unstable pulse. For more details, see Sec.
Ref. @28#. The variational approach is quite useful in chara
terizing the two-pulse case but is rather cumbersome to a
for multipulses. On the other hand, the singular perturba
approach is more qualitative~the details of the constants de
pend, for instance, on the specifics of the eigenmodes! but
captures very nicely the structure of the problem and
relevant physical factors contributing to it and can be ea
generalized to an arbitrary number of pulses. However,
have shown that the two methods work in a consistent m
ner and lead to the following general conclusions regard
pulse trains.

~i! The generalization to multipulses. A lattice of puls
will form. If the individual constituent pulses are consider
as ‘‘mesoscopic’’ particles@whose distance satisfies the c
teria that will be set below; see point~iv!#, then their mutual
interaction~coupling! is Toda-like @the exponential term in
their mutual separation resulting as in the RHS of Eq.~9!#,
but there is also a type of harmonic on-site substrate po
tial for each particle@the term coming from the translationa
eigenmodes in the LHS of Eq.~9!# whose amplitude is ex
ponentially small in the lattice spacing, due to the Peie
Nabarro ~PN! barrier. The balance of these terms forN
pulses@through the set ofN Eqs. ~9!# will give rise to a
lattice of N pulses for anyN>2.

~ii ! The continuum limit and the role of discreteness. T
above description justifies why stationary continuum mu
pulses are so special and prone to instability. The expone
interaction in the absence of the balancing discreten
would necessitate motion of the pulse centers@27#, unless a
very special~possibly very symmetric! stationary configura-
tion is achieved. These results also justify why discreten
has such ample possibilities for static multipulse configu
tions. The~periodic in the whole lattice! PN barrier creates a
discreteness-induced force term that can balance the e
nential ~in the pulse distance! tail interaction.
02661
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~iii ! Generality of conclusions. As mentioned before,
the one hand, this analysis has been performed for DN
which serves as a generic envelope equation in lattice Ha
tonian problems. Hence, at least within the appropriate t
scales, the analysis will be applicable generically for Kle
Gordon-type equations also. Furthermore, notice that no
cifics on the type of nonlinearity have been required. Furth
more, as has been shown for a variety of relevant mod
~see, i.e.,@32,33#!, the breaking of translational invarianc
due to discreteness leads to an exponential inh, harmonic in
xi behavior of the translational mode frequencyv similar to
the one used above. This is also a general result, follow
from the Melnikov calculation of the splitting of homoclini
orbits in nonintegrable discrete systems@33#. Hence, the ba-
sic components of Eq.~11! are generic features of the sy
tems of interest.

~iv! Stability of multipulses. The above results also sho
why stable multipulse configurations are possible in discr
systems. In particular, as has been remarked in@28#, the full
problem has translational modes close to the spectral ori
These modes ‘‘map’’ the curvature of the PN barrier. Su
pose that all components of a multipulse solution are at c
responding local minima of the PN barrier. In that case, o
interaction eigenmodes can be unstable. As was show
@28#, for two-pulse configurations when the pulses have
posite parity~up-down configuration!, the~exponential in the
pulse distance! interaction mode is stable. Hence, putting
in the language of@27#, this O(e) eigenvalue@where e
5exp(2L), L5uDxi u# is stable. This conclusion naturall
leads one to believe that only configurations of the form••
•-up-down-up-••• can be stable. As is shown by our anal
sis, such configurations will have anO(e) contribution in
their interaction modes from the up-down part and only
much weakerO(e2) effect from the up-up interaction~of
next nearest neighbors!. Consequently, such configuration
should be stable. This conclusion was in fact verified
numerical experiments such as the one shown in Fig. 1
this case, a Newton-Raphson numerical technique with
propriate selection of initial conditions was used to create
up-down-up configuration~on a 300-site lattice, with peri-
odic boundary conditions andh50.5) and subsequent nu
merical linear stability analysis confirms that the spectrum
this multipulse indicates stability. One may, however, wo
that oscillatory instabilities resulting from the collision of th
interaction eigenmodes with either the translational mo
@35# or the continuous spectrum modes@22,35# might be pos-
sible ~due to their opposite Krein sign@25,33#!. Alas, the
interaction eigenmodes behave asl;exp(2L) while the
translational eigenmodes behave as exp@2p2/(2h)#. For small
and intermediate discreteness@up to h'O(1)# to ensure di-
luteness and stability against collisions of eigenvalues
oscillatory instabilities, one has a straightforward criteri
by comparing the exponential dependences. Namely, iL
@p2/(2h) @L@p2/(2hr2) in dimensional units#, then no
such collisions will occur and the multipulse configuratio
will not suffer oscillatory instabilities. Notice that this con
dition is more stringent than the diluteness conditionL
@1; L@1/r in dimensional units!. In most cases of smallh,
in fact, the condition may be overly conservative since
1-3
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FIG. 1. A ~stable! multipulse
configuration and its spectrum
The top left subplot shows the
spatial profile ~the time-
independent part of the solution!
while the top right shows the
spectral plane (v r ,v i); the
subscripts denote the real an
imaginary part of the eigenvalues
respectively. The localized eigen
modes consist of three transla
tional mode pairs ofuvu'0.04
~shown in the bottom left panel!
and two interaction mode pairs o
uvu'0.01 as well as two remain
ing at zero~due to symmetry! ei-
genvalues~shown in the bottom
right panel!.
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power-law prefactor (h2b) of the translational eigenmode
will be important. For strong discreteness (h@1), the trans-
lational eigenmodes have merged with the continuous s
trum ~these eigenmodes do not have opposite Krein sign
least not in the bright soliton case considered here!. Hence,
in this case, the oscillatory instability will appear due to c
lision of interaction eigenmodes with the continuous sp
trum and a criterion for stability can be similarly derived b
ensuring thatC exp(2rL)!L @in dimensional units, withC a
constant ofO(1) andL the solitary wave frequency#. Even
thoughC is, in general, unknown, it can either be found ve
accurately by simulations~since the exponential dependen
on the separation is very clear; see, i.e.,@28#! or it can be
approximated for a rough estimate by a constant ofO(1). In
general, the more stringent one of the two~diluteness and
stability! conditions can be enforced and then@i.e., if the
pulse separation is larger than the critical one imposed
~the more stringent of! the two conditions#, the multipulse
configuration willgenericallybe stable.

We believe that the above exposition clarifies the featu
relevant to multipulse problems in discrete systems. The
ponentially small transversality effects of the orbits cau
exponentially small~in the lattice spacing! eigenvalues@32#,
which can be evaluated very accurately via the approac
@32,33#. In turn, these effects give rise to a periodic, on t
lattice, potential-energy barrier~of exponentially small am-
plitude! that consequently exerts a force on each pulse~a
‘‘substrate’’ force!. Additionally, multipulse systems encom
pass the exponentially small~now in the interpulse distance!
effects of tail interaction, which also cause an~attractive for
the same parity, repulsive for opposite parity@28#! additional
force. The balance of the two forces can be manifested b
through the adjustment of singular perturbation theory to d
02661
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crete Hamiltonian systems and/or the more popular~but less
simple to generalize! variational approach in such systems.
can, in turn, lead to the generation of static multipulse c
figurations in such systems and a qualitative understand
both of such equilibria as well as of their potential stabili
We have in fact shown explicitly numerically and justifie
analytically why such systems can, possibly contrary to th
continuum siblings, support such stable multipulse entit
Notice the superiority of the singular perturbation techniq
developed herein with respect to the variational approach
@28#, as it is unaffected~in its degree of complication! by the
number of pulses involved and contains a clear physical
tuitive explanation of the competing factors and the nature
the resulting equations. On the other hand, when it can
formulated, the variational method gives a more quantitat
aspect of the problem. It should also be highlighted that
the basis of maintaining the diluteness of the gas of pu
studied herein and also of avoiding oscillatory instabiliti
~such as those explored in@35,22#!, specific conditions for
the pulse separation have been developed that allow on
state what is the critical pulse separation, beyond which,
any interpulse distance@satisfying Eq.~9!#, such configura-
tions will be stable. A possibly interesting generalization
these results could consist of a step similar to the one
paragraph 4.4 of@27#, where a continuous~or possibly a
genuinely discrete! medium of pulses is considered. Suc
‘‘mesoscopic’’ lattices of pulses and of coherent structu
more generally could be of relevance to many continuum
well as discrete systems. It should also be noted that in
case presented herein, the positions and amplitudes of
pulse centers were directly determined by the intrinsic
namics of Eq.~1!. However, should an appropriate extern
site-dependent potential be added,~stable! multipulses con-
1-4
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sisting of pulses of variable amplitude or of selected posit
can be achieved. For a detailed study of such phenom
see, i.e.,@36#. Finally, an interesting generalization of th
work presented herein would involve more complicat
Ansätze ~than the one presented here!, which could also
account for variations of the height, width, and frequency
n
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the nonlinear waves. Such challenging tasks will be left
future studies.
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